Covariance decomposition in undirected Gaussian graphical models
نویسندگان
چکیده
The covariance between two variables in a multivariate Gaussian distribution is decomposed into a sum of path weights for all paths connecting the two variables in an undirected independence graph. These weights are useful in determining which variables are important in mediating correlation between the two path endpoints. The decomposition arises in undirected Gaussian graphical models and does not require or involve any assumptions of causality. This covariance decomposition is derived using basic linear algebra. The decomposition is feasible for very large numbers of variables if the corresponding precision matrix is sparse, a circumstance that arises in examples such as gene expression studies in functional genomics. Additional computational efficiencies are possible when the undirected graph is derived from an acyclic directed graph.
منابع مشابه
Covariance decomposition in multivariate analysis
The covariance between two variables in a multivariate Gaussian distribution is decomposed into a sum of path weights for all paths connecting the two variables in an undirected graph. These weights are useful in determining which variables are important in mediating correlation between the two path endpoints. The decomposition arises in undirected Gaussian graphical models and does not require...
متن کاملIntroducing Gaussian covariance graph models in genome-wide prediction
Several statistical models used in genome-wide prediction assume independence of marker allele substitution effects, but it is known that these effects might be correlated. In statistics, graphical models have been identified as a useful tool for covariance estimation in high dimensional problems and it is an area that has recently experienced a great expansion. In Gaussian covariance graph mod...
متن کاملTrek Separation for Gaussian Graphical Models
Gaussian graphical models are semi-algebraic subsets of the cone of positive definite covariance matrices. Submatrices with low rank correspond to generalizations of conditional independence constraints on collections of random variables. We give a precise graph-theoretic characterization of when submatrices of the covariance matrix have small rank for a general class of mixed graphs that inclu...
متن کاملGraphical Answers to Questions about Likelihood Inference for Gaussian Covariance Models
In graphical modelling, a bi-directed graph encodes marginal independences among random variables that are identified with the vertices of the graph (alternatively graphs with dashed edges have been used for this purpose). Bi-directed graphs are special instances of ancestral graphs, which are mixed graphs with undirected, directed, and bi-directed edges. In this paper, we show how simplicial s...
متن کاملObjective Bayes Factors for Gaussian Directed Acyclic Graphical Models
We propose an objective Bayesian method for the comparison of all Gaussian directed acyclic graphical models defined on a given set of variables. The method, which is based on the notion of fractional Bayes factor, requires a single default (typically improper) prior on the space of unconstrained covariance matrices, together with a prior sample size hyper-parameter, which can be set to its min...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005